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(Received 16 June 1988 and in revised form 30 September 1988) 

On a linearized theory, the pressure field due to  bubbles oscillating asymmetrically 
in a ‘distortion mode ’ decays with radial distance r like d n + l ) ,  where n > 1. Hence 
these modes have been thought to  produce a negligible emission of sound. In  this 
paper it is shown that, on the contrary, in nonlinear theory the distortion modes 
produce a monopole radiation of sound (n = 0) a t  second order. I ts  frequency is twice 
the basic frequency of the distortion mode, and the sound amplitude is proportional 
to the square of the distortion amplitude. The magnitude of the pressure fluctuations 
within the bubble is comparable with 1 atmosphere. 

1. Introduction 
The production of sound by a rippling stream, or by a water surface lightly ruffled 

by the wind, or by jets entering a free surface, or by air bubbles emerging from an 
underwater nozzle, are all phenomena which despite their familiarity are far from 
being fully understood. The sound of bubbles forming a t  a nozzle was first studied 
and partly explained by Minnaert (1933) and afterwards by Meyer & Tamm (1943). 
Minnaert showed that the frequency of the sound was experimentally close to that 
of the radial mode of oscillation of a spherical bubble containing the observed volume 
of air - the so-called ‘breathing mode’. His demonstration relied on a simple, linear 
theory of small pulsations, in which the kinetic energy in the water was equated to 
the extra potential energy stored in the bubble gas. 

Fully nonlinear theories for such oscillations have been given by Nottingk & 
Neppiras (1950) and many later workers; for a review see Plesset & Prosperetti 
(1977). The emphasis in such studies has usually been on the explanation of 
cavitation phenomena. On the other hand, for the sound produced by bubbles near 
a free surface we are concerned with the oscillation of air bubbles at approximately 
atmospheric pressure. 

All of the above work leaves unanswered a fundamental question: how are the 
bubble oscillations set in motion 1 It seems to have been tacitly assumed that the 
motion was due to the addition of a sudden ambient pressure immediately following 
the closure of the bubble surface. At a recent conference on underwater sound from 
the sea surface both Crowther (1987) and Hollett & Heitmeyer (1987) showed that 
an additional static pressure of say 10 cm of water a t  the instant of bubble formation 
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might be sufficient to explain the observed sound intensity from a breaking wave. In 
the present paper, however, we wish to draw attention to the much larger effects 
probably produced by the initial distortion of the bubbles, both in breaking waves 
and in other circumstances of bubble formation. 

The distorted, or asymmetric, oscillations of bubbles have usually been dismissed 
as significant sources of sound (see for example Fitzpatrick & Strasberg 1957) on the 
grounds, first, that the natural frequency was too low, and second that on the linear 
theory, as given by Lamb (1932, p. 475), both the motion and the associated pressure 
fluctuations decay too rapidly with radial distance r from the bubble. Unlike the 
breathing mode, which creates a pressure field varying like r-l (a monopole), the 
‘distortion modes’ decay like higher inverse powers of T. A nonlinear theory for 
distortion modes has been given by Tsamopoulos & Brown (1983) which, however, 
appears incomplete (see $6 below). 

Now a simple analogy with standing waves on deep water suggests that there could 
well be second-order, or higher, nonlinear terms in the pressure fields of a distortion 
mode which are not attenuated so rapidly with r as are the first-order terms. To 
study these we must extend the linear theory to higher order. In this paper we carry 
out such an investigation and find that at second order the distortion modes do 
indeed emit a monopole radiation, varying only like r-’. The radiation has a 
frequency double that of the linear oscillation, and an amplitude proportional to the 
square of distortion amplitude. A first glance a t  orders of magnitude shows that the 
amplitude is surprisingly large: in and near the bubble itself, the pressure changes 
can be of the order of one atmosphere or more. 

The orders of magnitude are discussed first in $2 below. I n  §$3 and 4 we derive the 
full, nonlinear boundary conditions a t  the surface of the bubble, and in $5 we derive 
equations in a perturbation scheme, correct to  second order. There is a simplification, 
in that a t  second order it is necessary to consider only the equations for the 
spherically averugd motion and pressure field, the remainder of the motion being 
relatively small when r is large. The axisymmetric normal modes are discussed in 
detail in $56 and 7 .  

The analogy with standing waves on the surface of deep water is described briefly 
in $8. This leads, in $9, to the discussion of a different type of oscillation of a spherical 
bubble, namely an eastwards or westwards travelling wave. When, and only when, 
the eastwards and westwards waves are present simultaneously, do they emit a 
monopole radiation, which is proportional to the product of their amplitudes. 
Conclusions follow in $10. 

2. Orders of magnitude 
To define the range of bubble sizes in which we are interested we show in figure 1 

the range of diameters for bubbles observed visually near the surface of a wind-wave 
channel, a t  different wind speeds, by Toba (1961). His diagram is reproduced here for 
convenience. At the highest wind speeds the diameters range from about 0.3 to  
10 mm, hence the radii a lie between 0.015 and 0.5 cm. This is certainly much larger 
than the bubble sizes found a t  depths of 1 m or more in the ocean. The range of sizes 
may be compared with the bubble radii studied by Minnaert (1933) : 0.17 to  0.30 cm, 
and by Fitzpatrick & Strasberg (1957) : a = 0.23 cm. For the purpose of discussion we 
shall assume that 

0.01 cm < a < 1.0 cm. (2.1) 
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Bubble diameter (mm) 

FIGURE 1 .  Calculated mean rate B of bubble production at the sea surface, per log (bubble 
radius) (from Toba 1961). 

Now in the well-known linear theory of bubble oscillations (see for example Plesset 
& Prosperetti 1977) the radian frequency w of the fundamental radial mode is given 

where y is the ratio of the specific heats ( =  1.4 for adiabatic changes in air), pa  is the 
equilibrium pressure and a the equilibrium radius of the bubble, p the density of 
water and T surface tension. In what follows we shall generally set p = 1 g/cm and 
T = 75 dyne/cm. Moreover, if z denotes the depth of the bubble below the free 
surface, and p, the atmospheric pressure, then 

2T 
Po = P * + P P + a .  

The atmospheric pressure being somewhat less than lo6 dyne/cm2, and a being at 
least 0.01 cm it is clear that both the second and third terms on the right of (2 .3)  are 
small compared to the first, and we may take 

(2.4) 

to a fair approximation. Thus for bubble sizes in the range (2.1) the radian frequency 
lies between 2 x lo3 s-* and 2 x lo6 s-l, corresponding to frequencies o / 2 n  lying 
between 0.3 and 30 kHz, roughly. 

The asymmetric modes of oscillation, on the other hand, have radian frequencies 
a, given by 

pa  = 1.0 x lo6 dyne/cm2 

T 
a3 

CT; = ( n - l ) ( n + l ) ( n + 2 ) - ,  (2.5) 



528 M .  S. Longuet-Higgins 
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FIGURE 2. Radian frequency 2u, of the second harmonic in a distortion mode of degree n, 
compared to the frequency o of the breathing mode (broken line). 

a (cm) 
0.00074 
0.00274 
0.00631 
0.0119 
0.0199 
0.0307 
0.0450 

w / 2 ~  (kHz) 

472.0 
121.0 
57.1 
27.6 
16.5 
10.6 
7.28 

n 
9 

10 
11 
12 
13 
14 
15 

a (cm) 

0.0627 
0.0847 
0.111 
0.143 
0.180 
0.223 
0.272 

TABLE 1. Bubble radius at which 2u, = w 

w/2n (kHz) 

5.20 
3.85 
2.93 
2.28 
1.81 
1.46 
1.20 

where n is the order of the corresponding spherical harmonic (see Lamb 1932). The 
first-order (linearized) pressure fluctuations in this type of oscillation decay like 
~ - ( ~ + l )  with radial distance r from the centre of the bubble, and so become negligible 
even at  moderate distances, when n > 1. 

Consider now the doubled frequency 2an. The situation is seen more clearly in 
figure 2 where 20, and w are plotted as functions of the bubble radius a. It will be 
seen that there are resonances between 2an and w depending on the value of a. 
Table 1 below lists the values of a and the corresponding values of n end 2an, or w .  
Most of these lie within the range of interest. 

It is also interesting to consider the order of magnitude of the second-order 
pressure fluctuations. Suppose we have an initial distortion ea of the bubble surface 
from its spherical shape, where E is the relative distortion. The particle velocities 
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accompanying the oscillation will be of order eagn, and the changes in pressure, from 
Bernoulli’s equation, will be of order 

p’ = ;(“a(r,)2. (2.6) 

Comparing this with the equilibrium pressure p ,  in the bubble we have from ( 2 . 2 )  

At resonance, when 2an = o, and with E as small as 0.5 we get pressure changes 
equivalent to about one eighth of an atmosphere, that is to  say local fluctuations as 
great as 1.25 m of water. Even when e = 0.2 we still get 20 cm of water, which is 
greater than the pressure changes (10 cm of water) assumed by Hollett & Heitmeyer 
(1987) in their theory of sound generation by sudden applications of pressure to 
bubbles in a spilling breaker. Since much larger relative distortions of the bubbles are 
readily conceivable, i t  appears that here we may have a very significant mechanism 
for the generation of underwater sound. 

It remains to be shown that such second-order asymmetric oscillations can 
produce oscillations at  a distance r which vary only like r - l ,  as in the symmetric 
radial oscillation. This we shall now demonstrate. 

3. Boundary conditions (1) 
Since the bubble radii to be considered are much smaller than the wavelength of 

the emitted sound, it is permissible when discussing the motion near the bubble itself, 
to assume that the compressibility of the water can be neglected. We also assume 
initially that the flow is irrotational and that viscosity can be neglected. 

We adopt radial coordinates r ,  8, qi as shown in figure 3, and write the equation of 

(3.1) 
the bubble surface as 

where t denotes the time. Then the kinematic boundary condition can be written 

T = w e ,  9, t ) ,  

as D 
- ( R - r )  = 0, 
Dt 

where D/Dt denotes differentiation following the motion : 

u being the particle velocity. The vorticity being neglected, we may write 

u = vq5, 
where @(r,  t9,q5, t )  is the velocity potential. Then (3.2) becomes 

Here subscripts are used to denote partial differentiation and a dot ( . )  denotes the 
inner vector product. Hence we have 

to be satisficd when r = R.  
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FIGURE 3. Definition of spherical coordinates. 

It is convenient to replace (3.6) by an equivalent condition to be satisfied on the 
equilibrium surface r = a. We do this by expanding. each side of (3.6) in a Taylor 
series about r = a. Hence if we write 

R = a+y(e, #, t )  (3.7) 
we find that, correct to second order in y, 

is to be satisfied when r = a. 

4. Boundary conditions (2) 
If we neglect viscous terms as before, then the dynamical boundary condition to 

be satisfied when r = R(8, 4, t )  is that the pressures on the two sides of the surface 
differ only because of surface tension, i.e. i fp  and pB denote the pressure in the water 
and in the bubble, respectively, and if we take the density of the water as unity, 
then 

pB = p + T V . n .  

Here n denotes the unit normal to the surface r = R, and we use the theorem that V - n  
is equal to the sum of the curvatures, see Lamb (1932, p. 474). 

Now a t  points within the water we have Bernoulli's equation 

p+@,++(V@)Z = F( t ) .  (4.2) 
Assuming that as T-+ cx), both @ and its derivatives tend to 0, we see that F(t) is 
simply equal to the pressure p ,  a t  infinity. Hence (4.1) can be written 

(4.3) 

We now examine the curvature term more carefully. The direction of the normal 

@, - TV a n = ( p ,  -pB) -$(VCD)~. 

V ( r - R )  = 

is that of the vector 

(4.4) 



Monopole emission of sound by asymmetric bubble oscillations. Part 1 

and we have 

1 
A 

n = -V(r -v )  say. Thus 

1 
A 

-V(r -q)+-V2(r -7 ) .  and 

But 

2 1  
r r2 

Vz(r-7) = ---V2 by (4.4) and S 71, 

where V; denotes the surface Laplacian: 

1 
Also, by (4.5) 

and so correct to second order we obtain 

53 1 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Now we wish to replace (4.12) by an expression to be evaluated on r = a. So we 
expand the powers of r in a Taylor series about r = a to give finally 

(4.13) 

In (4.3) the term i(V@)2 is already of second order in @, hence 7,  and if we 

(4.14) 
2T 
a 

write 
PB-Pm =-+PLr 

where pL is now the pressure perturbation in the bubble, we have 

(4.15) 

to  be satisfied when r = a. 

pressure p,. We take the static law 
To complete the boundary condition (4.15) we need some assumption as to the gas 

"=F) Y 
Po 

where p a  is the equilibrium pressure : 
2T 

Po =pa+,> 
7,, is the equilibrium volume: 

r0 = $nu3, 

(4.16) 

(4.17) 

(4.18) 
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and 7 is the instantaneous volume : 

7 = {J(a+7)3sinOdOdq5. 

On expanding the integrand binomially we obtain 

7 317 3i7 
-= 1+-+,+,, 
70 a a a  

(4.19) 

(4.20) 

where an overbar denotes integration over the unit sphere. So on substitution in 
(4.16) we have, correct to second order, 

5. Small perturbations 
Let us introduce the expansions 

I 7 = 7l+rl2+..., 

@ = Q1+G2+ ..., 

(4.21) 

PB = pBl+PB2+***,) 

where qm,  Om and pm are all of order e m , €  being an ordering parameter. On 
substituting these expressions in the two boundary conditions (3.8) and (4.15), using 
(4.21) and equating coefficients of em we find a t  first order (m = 1) 

T l t - @ l r  = 0 (5 .2)  

and 

where 

(5.3) 

(5.4) 

Also, from (4.2), Pl = -@It- (5.5) 

These are well-known equations of linear theory. At  second order (m = 2) we 
obtain 

and 
m 

It will be seen that the operators on the left-hand sides of (5.6) and (5.7) are similar 
to those in (5.2) and (5.3), but that the right-hand sides are now quadratic, or rather 
bilinear, expressions in yl and G1. 

The equations for the mean, i.e. spherically averaged, quantities V2 and 62 are of 
even simpler form. For we have in general 
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and also @1r = V l t  (5.9) 

by (5.2). Furthermore, for the distortion modes, 

q1 = 0. 

Thus on averaging both sides of (5.6) and (5.7) we have 

(5.10) 

(5.11) 

(5.12) and 

where w is given by (2.2). It will be found advantageous to define the modified 
displacement 

h2 = q2 +%/a = &(7/7,, - 1)  (5.13) 

by (4.20). Thus h, is proportional to the change in bubble volume. Equations (5.11) 
and (5.12) then become 

2T 2 - -  - 
6 2 t  - (JJ a72 - - 71 7ltt - t ( V @ J 2  + 2 7 ,P  + vg 7 l )  + w 2 2 ,  

and 

respectively. 

6. Asymmetric normal modes 

and 

(5.14) 

(5.15) 

where S,,(8, #) is a spherical harmonic of positive degree n (thus excluding symmetric 
oscillations) and a,, b, are functions of the time t only. Since G1 is proportional to 
r-("+') the form (6.2) satisfies the equation of continuity V2G1 = 0, and also vanishes 
a t  infinity. We note that for any spherical harmonic X,, 

VgS, = -n(n+ 1)S,, (6.3) 

where Vg is given by (4.12). Moreover 

S,(O7$) = 0, n = 1,2,  ..., (6.4) 

so that Tl vanishes and there is no change in the volume of the bubble - at  this order. 
Substituting into the boundary conditions (5.2) and (5.3) we have 

n + l  

db T 
It = (n-1) ( n + 2 ) 3 a n .  
dt 

da,=-- dt a bn 
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0000 
n = 2  n = 3  n = 4  n = 5  

FIGURE 4. Axial sections of the axisymmetric normal modes: rz = 2, 3, 4 and 5 .  

Hence all the conditions of the problem are satisfied by taking 

I a, = &cosu,t, 

b ,  = ----A, aan sin a, t ,  
n + l  

with gi = (n-1)(n+1)(n+2)T/a3 (6.7) 

as stated in $ 2 .  The fluctuation p ,  in the pressure is given by 

p - -Glt= . - -  
n + l  1 -  

For axisymmetric oscillations, when S,(8, q5) is taken to be independent of q5, we 

(6.9) 
have 

where P, denotes the Legendre polynomial of degree n. We have Po = 1 and Pl = 

cos8, the case n = 1 representing a pure bodily translation of the sphere, with 
u1 = 0. The simplest case for which g, $; 0 is n = 2 for which we have 

Sfi(0, q5) = p,(cos8), 

pz(cose) = g c O s v - +  (6.10) 

(see figure 4). In this mode the maximum radial displacement a t  each pole 8 = 0 or 
n: is just twice that a t  the equator (8 = in:). 

into (5 .6) ,  for 

(n+ 1) (n+2)82,- (6.11) 
example, we have 

Consider now the second approximation. On substituting and 

and so from (6.6) and (6.7) 

yzt - Gzr = L(8, q5) sin 2un t ,  

where L(0. d) is of the form 

(6.12) 

(6.13) 

and L ,  L" denote constants independent of 8 and q5. Similarly on subtituting into (5.7) 
we obtain an equation of the form 

(6.14) 
T 

G , , + ~ ( 2 + V ~ ) y 2 - a w 2 ~ z  =M(8,q5)cos2un~++N(8,q5),  

where M(B, q5) and N(0,  q5) are of the same form as L(8, q5). 
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Now it  is clear that 8; and AS;@ are each polynomials in cose of degree 2n. So they 
may be expressed as the sum of Legendre polynomials P, of degrees m < 2n. Hence 
one can express the right-hand sides of (6.12) and (6.14) in the forms 

(U,AS, + V,S2 + ... + U,,&J sin 2g, t 

(V, So + V, 8, + . . . + V,, flZn) cos 2a, t+ (W, So + W2 8, + . . . + W,, AS,,) 

(6.15) 

(6.16) 
and 

respectively. So one can find solutions to the boundary conditions in the forms 

7, = (X,So+X,S2 + .. . +X2,AS,,) C O S ~ ~ ,  t +  (&So + Y,8, + . .. + Y,,#,,) (6.17) 

and @,= Z , - S , + Z ,  - AS,+ ...+ z,, (~)2n+1~,,]  sin 2a, t [ : (:)” (6.18) 

by suitable choice of the coefficients X, ,  Y, and 2,. However, because of the high 
inverse powers of r in the expression for Q2, the behaviour of the motion a t  large 
distances r from the bubble will be dominated by the terms in m = 0. Since So = 1 
that implies 

(6.19) 
a 

cD2 N 2, - sin 2afl t . 
v 

This represents a monopole source of sound, independent of the directions 0 and 

For all non-zero values of m, the spherical average of S,(e,$) vanishes. So on 
4.  

taking averages in (6.17) and (6.18) we have 

I ?i2 =X0cos2a,t+Y,, 
a 62 = Z, - sin 2afl t ,  
r 

(6.20) 

so that @, - g2. Moreover, to determine 6, we may go directly to (5.14) and (5.15) 
for h, and 6,. 

The mean values on the right of (5.14) and (5.15) may be evaluated by use of the 
following Lemmas : 

LEMMA A 

LEMMA B 

1 
2n+ 1 * 

AS: n(n+l) 

- 
= - 

s ; * + A  = 2n+l. 
sin2 8 

Hence from (5.14) we have 
h2t - 6,, = 0, 

62t - w2ah2 = M cos 2u, t + N ,  

where 
(n - 1) (n + 2 )  (4n - 1) T 

M =  -A; 
4(2n + 1 )  a3 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

and 
3(n-  1) ( n + 2 )  T 

4(2n+l)  a3 
N = -  -A;. (6.25) 



536 M .  S. Longuet-Higgins 

Equations (6.23) are satisfied by taking 

where? 

1 
I 

h2 = X C O S ~ U , ~ + Y ,  
@, = Z-sin2unt, CL 

r 

I (6.26) 

(6.27) 

7. Discussion 

is 
The pressure fluctuation a t  large distances r corresponding to  the solution (6.26) 

a 
r p ,  = -2crnZ-cos2unt, (7.1) 

where Z is given by (6.27). This represents a monopole source of sound with radian 
frequency 2un -twice the fundamental frequency un of the natural, asymmetric 
oscillation. At distances comparable with the wavelength of sound, the term 2gn t in 
(7.1) is to be replaced by 2un(t-r/c) where c is the speed of sound.1 

From (7.1) and the expressions (6.24) and (6.27) for M and 2 we see that the 
amplitude of the pressure field is proportional to  A:, the square of the first-order 
wave amplitude. It is also inversely proportional to (4u;-w2), so it becomes large 
when the doubled frequency 2un approaches the fundamental frequency o of the 
radial normal mode. We can regard the effect as a ‘resonance’ between the second- 
order driving force and the radial mode of oscillation. 

What is the nature of the driving force! We can investigate this question by 
supposing the gas pressure p ,  in the bubble to be such that the radial mode frequency 
vanishes. It is clear from (6.26) and (6.27) that there is still a monopole radiation. 
Hence the oscillation is not due essentially to any second-order change in the volume 
of the bubble. That indeed must occur, but is only an accompanying feature of the 
resultant oscillation. 

The answer may be found in the dynamical boundary condition (4.3) which 
suggests that  the driving force comes from two sources: 

(1) The Bernoulli term $(velocity)2 in the pressure. This clearly has two maxima 
and two minima in every period 2n/un of the fundamental oscillation. 

(2) A second-order contribution from the surface-tension term TV - n ,  as seen more 
explicitly in (4.12). The additional terms, such as q(a/ar)TV-n, arising from the 
Taylor expansion about T = U ,  must be regarded as artifacts of the method of 
solution rather than real physical effects. It appears that all the resulting terms 
happen to be in-phase with the Bernoulli term. 

f The above results differ from the analysis given by Tsamopoulos & Brown (1983) in some 
significant respects. Their expressions (56) to (58) contain no term in the denominator 
corresponding to ( 4 r f - d ) .  Moreover in the lowest-order terms, a factor 7-l (corresponding to our 
7-l) seems to have been omitted. Comparison with our results suggests that the authors may have 
made an assumption equivalent to setting w = 0. 

$ When compressibility is taken into account, the linear theory also yields a small monopole 
component; but this is negligible compared with (7.1), unless AJa is very small. 
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P2 
4 

FIQURE 5. A standing wave on water of depth H ,  and the corresponding fluctuation p ,  in the 
mean pressure on the bottom. 

8. Standing waves on deep water 
An illuminating analogy exists between the nonlinear emission of sound by the 

distorted bubble oscillations, as discussed above, and the second-order production of 
underwater sound and microseisms by standing waves on deep water (Longuet- 
Higgins 1948, 1950, 1953). 

Consider a simple surface wave on water of mean depth H as in figure 5, and 
suppose that the surface elevation 7 is given, to first order, by 

(8.1) 71 = A cos (kx - at) +A’ cos ( k ~ +  a t ) .  

This represents two progressive waves of the same length 2nlk and radian frequency 
CT travelling in opposite senses. If A’ = A then we have a standing wave 

71 = 2A cos kx cos a t .  (8.2) 

According to linear theory, the first-order pressure fluctuations decay rapidly with 
the depth z below the surface, in fact like cosh k ( z - H ) .  Hence if z exceeds more 
than half a wavelength these fluctuations become negligible, just as the pressure 
fluctuations in an asymmetric bubble oscillation, a t  several ‘wavelengths ’ 2 x a / n  
from the surface of the bubble. 

At second order, however, we find at  some distance below the standing wave a 
pressure fluctuation 

which is proportional to the square of the wave amplitude, and is of twice the 
fundamental frequency u. This term is not attenuated with the depth z. Its existence 
can be very simply related to the raising and lowering of the centre of gravity of the 
fluid, which occurs twice in a complete cycle (see Longuet-Higgins 1953). 

p ,  = - 2 A 2 8  cos 2 ~ t  (8.3) 

In the general case (8.1) a similar argument shows that 

p ,  = - ZAA’U’ cos 2~ , ,  t ,  (8.4) 

so that if either A or A’ vanishes, giving a pure progressive wave, then the pressure 
fluctuations vanish. This corresponds to the fact that in a progressive wave the 
centre of mass remains at  a level constant in time. The formula (8.4) has been very 
well verified by simple laboratory experiments (see Cooper & Longuet-Higgins 
1951). 
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The analogy becomes closer when we introduce the compressibility of the water. 
It is then found that the pressure fluctuation (8.3) gives rise to a sound wave in 
which 

cos 2 4 %  - H ) / c  
p ,  - -2A v cos 2ct  

cos 2 a H l c  

propagated between the free surface z = 0 and the bottom x = H (see Longuet- 
Higgins 1950, Section 4). When the depth H is equal to (in+:) sound wavelengths we 
have a resonance condition when the denominator in (8.5) goes to zero and the 
pressure amplitude increases within limit, damping being neglected. 

Lastly, when the compressibility of the bottom is also taken into account we find 
that the amplitude remains finite owing to radiation of seismic energy either 
vertically downwards, when the surface waves extend indefinitely in a horizontal 
sense, or horizontally as Stoneley waves, when the generating area is bounded. 
However, the resonance effect can still bc seen in the response curve of the vertical 
displacement as a function of the frequency (Longuet-Higgins 1950, 1953). 

For ocean surface waves, this mechanism was observed to be effective for 
microseisms in the range 3 to 8 s  (Haubrich, Munk & Snodgrass 1963) which 
correspond to surface waves of period 6 to 16 s. An even more detailed agreement has 
recently been demonstrated by Kibblewhite (1987) for sea waves and microseisms 
near New Zealand. We note that Brekhovskikh (1966) suggested the same mechanism 
as a possible source of underwater sound a t  much higher frequencies, but in that 
context the sound is insignificant. Although high-frequency ripples may indeed exist 
on the ocean surface, it appears that  these are not efficient sound generators. On the 
contrary, the bubble oscillations are very effective sound generators, as we shall 
see. 

The inverse phenomenon, whereby standing waves on water can be generated 
subharmonically by the application of an external pressure (or a vertical acceleration) 
to the body of the fluid, has been known since Faraday (1931); see also Longuet- 
Higgins (1983). A theoretical analysis was given by Benjamin & Ursell (1954). 

In  a similar way, the generation of second-order monopole pressure by distorting 
bubbles may be viewed as the inverse of the well-known phenomenon whereby 
violent bubble distortions are produced subharmonically by applying a high- 
frequency pressure to the fluid (see Kornfeld & Suvorov 1944; Strasberg 1958; 
Benjamin 1958, 1964; Eller & Crum 1970). 

9. Progressive bubble oscillations 
The analogy with surface waves suggests that  we consider other forms of 

perturbation of a bubble surface, particularly 'progressive waves ', in which the 
surface displacement is given to first order by 

yl = A c o s ( r n ~ - ~ t ) P ~ ( c o s o ) ,  

where P;(cos 0 )  denotes the associated Legendre polynomial : 

d" 
d(cos 0)" PF(cos8) = sin"8 P7ACOS O), (9.2) 

and 0 < rn < n. The expression (9.1) represents a wave of equatorial wavenumber rn 
progressing eastwards around the sphere. Does such a wave produce monopole 
pressure fluctuations at second order 1 
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Corresponding to (9.1) we have a first-order velocity potential 

On substituting the expression into the boundary conditions (5.6) and (5.7) we find 
that all the product terms on the right are functions of (mq5-frnt). Hence on 
averaging with respect to q5 all the time-dependence vanishes. Therefore on the right 
of the averaged equations (5.12) and (5.13) there are no time-dependent terms, and 
the monopole terms vanish identically. 

There will of course remain some constant terms, proportional to A2.  In an ini- 
tial-value problem these can still give rise to a transient response proportional to 
A 2  cos wt, which will decay under viscous and radiation damping. 

Now suppose we consider the more general perturbation 

with 
q1 = [A  cos (mq5 - B~ t) +A’ cos (mq5 + an t)] P;(COS e), (9.4) 

dJ1 = [-Asin(mq5-~~t)+A’sin(mq5+~~t)]-  

This represents the superposition of two waves of the same wavenumber m/a and 
frequency B,, travelling in opposite directions. On the right-hand sides of (5.12) and 
(5.13) there will now be three groups of terms, proportional to A2, AA‘ and A’2 
respectively. The terms in A2 will be functions of (mq5-crt) and so on averaging will 
make no time-dependent contribution. The terms in A’2 will be functions of (mq5 + vt) 
and will make no contribution similarly. The terms in AA’, however, will make a 
contribution. The factor multiplying AA‘ will be the same as if A and A’ were both 
equal, that is to say as if 

q1 = 2 ~ c ~ ~ ~ ~ 3 c 0 s e ) ~ ~ ~ ~ ~ t  (9.6) 

and 
n+l 

= ~A%(E) cosrn+P~(cos~)sinu,t .  
n + l  r (9.7) 

Writing P;(cosO)cosmq5 = Sn(B,q5) (9.8) 

the expressions on the right of (9.6) and (9.7) are formally the same as in (6.1), (6.2) 
and (6.6), but with A = &. Accordingly the analysis of $86 and 7 applies precisely, 
though with different normalizing constants in (6.21) and (6.22). Hence we have a 
monopole radiation proportional to the product AA’, an exact analogue to the 
pressure fluctuations from standing waves in deep water (equation (8.4)). 

The terms in A2, AA’ and At2 will also yield a constant, second-order change in the 
pressure near the bubble surface, which must be taken into account in initial-value 
problems. 

10. Discussion and conclusions 
We have shown that the normal-mode distortions of bubbles will emit a monopole 

radiation nonlinearly, having a frequency double that of the basic frequency. This 
effect is precisely analogous to the generation of unattenuated pressure oscillations, 
at second order, beneath standing surface waves on deep water, and the consequent 
radiation of sound or microseisms. In the present case the free surface is the surface 
of the bubble rather than the horizontal surface of the sea. 
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The order of magnitude of the second-order pressure fluctuations near the surface 
of the bubble appears to be large enough to  invite further investigation as a possible 
source of underwater sound in the ocean, and elsewhere. In a second paper (Longuet- 
Higgins 1989) we shall consider the underwater sound signal produced, at  second 
order, by an arbitrary initial distortion of a bubble, and make detailed calculations 
to be compared with observations. 

R E F E R E N C E S  

BENJAMIN, T. B. 1958 Excitation of oscillations in the shape of pulsating gas bubbles ; theoretical 
work. (Abstract). J. Aeozlst. SOC. Am. 30, 697. 

BENJAMIN, T. B. 1964 Surface effects in non-spherical motions of small cavities. In Cavitation in 
Real Liquids (ed. R. Davies), pp. 164-180. Elsevier. 

BENJAMIN, T. B. & URSELL, F. 1954 The stability of a plane surface of a liquid in vertical periodic 
motion. Proc. R .  Soc. Lmui?. A225,505-515. 

BREKHOVSKIKII, L. M. 1966 Underwater sound waves generated by surface waves in the ocean. 
Izv. Atmos. Ocean. Phys. 2, 970-980. 

COOPER, R. I. B. & LONGUET-HIGGINS, M. S. An experimental study of the pressure 
variations in standing water waves. Proc. R. SOC. Lond. A2Q6, 424-434. 

CROWTHER, P. A. 1987 Bubble noise creation mechanisms. Proc. NATO Adv. Workshop on Natural 
Mechanism of Surface Generated Noise in the Ocean, Lerici, Italy, 15-19 June 1987. In Sea 
Surface Sound (ed. B. R. Kerman), pp. 131-150. Reidel, 639 pp. 

ELLER, A. I. & CRUM, L. A. 1970 Instability of the motion of a pulsating bubble in a sound field. 
J. Acoust. Soc. Am. 47, 762-767. 

FARADAY, M. 1831 On a peculiar class of acoustical figures, and on certain forms assumed by 
groups of particles on vibrating eleastic surfaces. Phil. Trans. R .  Soc. Lond., pp. 299-340. 

FITZPATRICK, H. M. & STBASBERG, M. 1957 Hydrodynamic sources of sound. Proc. 1st Symp. on 
Naval Hydrodynamics, Washington, D.C., NAS-NRC Publ. 515, pp. 241-280. Washington : US 
Govt. Printing Office. 

HAUBRICH, R. A,, MUNK, W. H. & SNODGRASS, F. E. 1963 Comparative spectra of microseisms 
and swell. Bull. Seis. SOC. Am. 5 3 ,  27-37. 

HOLLETT, R. & HEITMEYER, R. 1987 Noise generation by bubbles formed in breaking waves. Proc. 
NATO Adv. W w k s b p  on Natural Mechanisms of Surface Generated Noise in the Ocean, Lerici, 
Italy, 15-19 June 1987. In Sea Surface Sound (ed. R. R. Kerman), pp. 449-462. Reidel, 
639 pp. 

KIBBLEWHITE, A. C. 1987 Ocean noise spectrum below 10 Hz - Mechanisms and measurements. 
Proc. NATO Adv. Workshop on Natural Mechanism of Surface Generated Noise in the Ocean, 
Lerici, Italy, 15-19 June 1987. In Sea Surface Sound (ed. B. R. Kerman), pp. 337-360. Reidel, 
639 pp. 

KORNFELD, M. & SUVOROV, L. 1944 On the destructive action of cavitation. .I. Appl. Phys. 15, 
495-506. 

LAMB, H. 1932 Hydrodynamicrr, 6th edn. Cambridge University Press, 632 pp. 
LONGUET-HIGGINS, M. S. 1948 The generation of microseisms by sea waves. Proc. Gen. Assembly 

IUGG, Oslo, Aug. 1948, pp. 17-18. Assoc. S6is. MBtBorol. OcBanog. Phys. SBance Commune. 
LONGUET-HIGGINS, M. S. 1950 A theory of the origin of microseisms. Phil. Trans. R. SOC. Lond. 

LONGUET-HIGGINS, M. S .  1953 Can sea waves cause microseisms '1 Proc. Symp. on Microseisms, 

LONGUET-HIQGINS, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at  a free surface. 

L~NGUET-HIQGINS, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. 

MEYER, E. & TAMM, K. 1939 Eigenschwingungen und Dampfung von Gasblasen in Flussigkeiten. 

1951 

A243, 1-35. 

Harriman, N.Y., Sept. 1952. NAS-NRC Pub. 306 ,  pp. 74-93. 

J. Fluid Mech. 127, 103-121. 

Part 2. An initial-value problem. J .  Fluid Mech. 201, 543-565. 

Akust. 2. 4, 145-152. 



Monopole emission of sound by asymmetric bubble oscillations. Part 1 541 

MINNAERT, M. 1933 On musical air-bubbles and the sounds of running water. Phil. Mag. 16, 

NOTTINGK, B. E. & NEPPIRAS, E. A. 1950 Cavitation produced by ultrasonics. Proc. Phys. SOC. 

PLESSET, M. S. & PROSPERETTI, A. 1977 Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 
9, 145185, 

STRASBERQ, M. 1958 Excitation of oscillations in the shape of pulsating gas bubbles; experimental 
work. (Abstract). J .  Acoust. SOC. Am. 30, 697. 

TOBA, Y. 1961 Drop production by bursting of air bubbles on the sea surface (111). Study by use 
of a wind flume. Mem. Coll. Sci. Univ. Kyoto A29, 313-343. 

TSAMOPOULOS, J. A. & BROWN, R. A. 1983 Wonlinear oscillations of inviscid drops and bubbles. 
J. Fluid Mech. 127, 51S537. 

235248. 

Lond. B63, 647-685. 




